Atomistic origin of lattice strain on stiffness of nanoparticles.
نویسندگان
چکیده
Lattice strain plays a crucial role on the properties of nanoparticles. Although the effect of lattice strain on nanoparticles has been widely studied in experimental measurements and calculations, its physical mechanism from the perfective of bond identities is still poorly understood. Herein we put forward an analytical solution of the size effect and external stimuli such as pressure and temperature dependence of lattice strain and bulk modulus of a nanoparticle from the perspective of atomistic origin. A shell-core configuration has been considered for the nanoparticle structure. It has been found that the lattice strain as well as quantum trapping and energy storage exerted by the compressive stress and thermal stress would be responsible for the mechanical behavior of nanoparticles. The theoretical predictions were well consistent with the experimental data and ab initio calculations, implying that the model could be expected to be a general approach to understand mechanical behavior in nanomaterials.
منابع مشابه
Structural and mechanical properties of AFe2O4 (A = Zn, Cu0.5Zn0.5, Ni0.3Cu0.2Zn0.5) nanoparticles prepared by citrate method at low temperature
In this work, the structural and elastic moduli properties of ZnFe2O4, Zn0.5Cu0.5Fe2O4, and Ni0.3Cu0.2Zn0.5Fe2O4 ferrites prepared by the citrate method have been investigated. The structuralcharacterization of the samples is evidence for a cubic structure with Fd-3m space group. TheHalder-Wagner analysis was used to study crystallite sizes and lattice strain and also stressand energy density. ...
متن کاملStructure of Lattice Strain and effect of sol concentration on the characterization of TiO2-CuO-SiO2 nanoparticles
We report on the synthesis, morphology, chemically and structurally of TiO2-CuO-SiO2 nanostructure with different precursors molar ratio and calcined temperatures. In the present work, ternary reactive powders in the TiO2-CuO-SiO2 systems have been obtained using the sol-gel method, by the simultaneous gelation of all cations. The compounds and other ...
متن کاملInvestigation of the effect of amino-alcohol stabilizers on crystal structure, band gap and blue luminescence of Cu-doped ZnO nanoparticles prepared by sol-gel method
In this research, Zn0.97Cu0.03O nanoparticles are prepared by sol-gel method using various stabilizers (Mono, Di, and Tri-ethanolamine). The effect of stabilizers on the structural, morphological and optical properties of the nanoparticles were investigated. Study of X-ray diffraction pattern shows the hexagonal wurtzite structure of samples. The crystallite size, strain, stress, and deformatio...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملStructure of Lattice Strain and effect of sol concentration on the characterization of TiO2-CuO-SiO2 nanoparticles
We report on the synthesis, morphology, chemically and structurally of TiO2-CuO-SiO2 nanostructure with different precursors molar ratio and calcined temperatures. In the present work, ternary reactive powders in the TiO2-CuO-SiO2 systems have been obtained using the sol-gel method, by the simultaneous gelation of all cations. The compounds and other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 7 شماره
صفحات -
تاریخ انتشار 2010